Gating of Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels by Adenosine Triphosphate Hydrolysis

نویسندگان

  • Shawn Zeltwanger
  • Fei Wang
  • Guo-Tang Wang
  • Kevin D. Gillis
  • Tzyh-Chang Hwang
چکیده

Gating of the cystic fibrosis transmembrane conductance regulator (CFTR) involves a coordinated action of ATP on two nucleotide binding domains (NBD1 and NBD2). Previous studies using nonhydrolyzable ATP analogues and NBD mutant CFTR have suggested that nucleotide hydrolysis at NBD1 is required for opening of the channel, while hydrolysis of nucleotides at NBD2 controls channel closing. We studied ATP-dependent gating of CFTR in excised inside-out patches from stably transfected NIH3T3 cells. Single channel kinetics of CFTR gating at different [ATP] were analyzed. The closed time constant (tauc) decreased with increasing [ATP] to a minimum value of approximately 0.43 s at [ATP] >1.00 mM. The open time constant (tauo) increased with increasing [ATP] with a minimal tauo of approximately 260 ms. Kinetic analysis of K1250A-CFTR, a mutant that abolishes ATP hydrolysis at NBD2, reveals the presence of two open states. A short open state with a time constant of approximately 250 ms is dominant at low ATP concentrations (10 microM) and a much longer open state with a time constant of approximately 3 min is present at millimolar ATP. These data suggest that nucleotide binding and hydrolysis at NBD1 is coupled to channel opening and that the channel can close without nucleotide interaction with NBD2. A quantitative cyclic gating scheme with microscopic irreversibility was constructed based on the kinetic parameters derived from single-channel analysis. The estimated values of the kinetic parameters suggest that NBD1 and NBD2 are neither functionally nor biochemically equivalent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator.

Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels are gated by binding and hydrolysis of ATP at the nucleotide-binding domains (NBDs). We used covalent modification of CFTR channels bearing a cysteine engineered at position 334 to investigate changes in pore conformation that might accompany channel gating. In single R334C-CFTR channels studied in excised patches, mod...

متن کامل

Adenosine Triphosphate–dependent Asymmetry of Anion Permeation in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel

The cystic fibrosis transmembrane conductance regulator (CFTR) forms a tightly regulated channel that mediates the passive diffusion of Cl- ions. Here we show, using macroscopic current recording from excised membrane patches, that CFTR also shows significant, but highly asymmetrical, permeability to a broad range of large organic anions. Thus, all large organic anions tested were permeant when...

متن کامل

CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates.

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is regulated by phosphorylation of the R domain and ATP hydrolysis at two nucleotide-binding domains (NBDs). It is controversial whether CFTR conducts ATP or whether CFTR might be closely associated with a separate ATP conductance. To characterize ATP channels associated with CFTR, we analyzed Cl- and ATP ...

متن کامل

ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator

Proteins belonging to the ATP-binding cassette superfamily couple ATP binding and hydrolysis at conserved nucleotide-binding domains (NBDs) to diverse cellular functions. Most superfamily members are transporters, while cystic fibrosis transmembrane conductance regulator (CFTR), alone, is an ion channel. Despite this functional difference, recent results have suggested that CFTR shares a common...

متن کامل

Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator.

Proteins belonging to the ATP-binding cassette superfamily couple ATP binding and hydrolysis at conserved nucleotide-binding domains (NBDs) to diverse cellular functions. Most superfamily members are transporters, while cystic fibrosis transmembrane conductance regulator (CFTR), alone, is an ion channel. Despite this functional difference, recent results have suggested that CFTR shares a common...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 113  شماره 

صفحات  -

تاریخ انتشار 1999